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SUMMARY 

A numerical procedure to solve turbulent flow which makes use of the k-E model has been developed. The 
method is based on a control volume finite element method and an unstructured triangular domain 
discretization. The velocity-pressure coupling is addressed via the vorticity-streamfunction and special 
attention is given to the boundary conditions for the vorticity. Wall effects are taken into account via wall 
functions or a low-Reynolds-number model. The latter was found to perform better in recirculation regions. 
Source terms of the k and E transport equations have been linearized in a particular way to avoid non- 
realistic solutions. The vorticity and streamfunction discretized equations are solved in a coupled way to 
produce a faster and more stable computational procedure. Comparison between the numerical predictions 
and experimental data shows that the physics of the flow is correctly simulated. 

KEY WORDS Vorticity-streamfunction Turbulent flow Control volume k--E model 

1. INTRODUCTION 

Numerical computation of laminar or turbulent flows requires the solution of a set of non-linear 
partial differential equations, all of which are of the convection-diffusion type. 

As the Reynolds number of the flow increases, the convection terms become more and more 
dominant and regular Galerkin finite element and centred difference methods lead to spurious 
oscillations in the solution. To overcome this difficulty, Patankar’ proposed an interpolation 
function which is based on the best possible solution of the convection-diffusion equation. This 
function takes into account the relative strength of the convection and is locally defined in a flow- 
oriented co-ordinate system. It has the advantage of reducing numerical diffusion and benefits 
from the easy physical interpretation of control volume methods when applied to unstructured 
triangular meshes. It was further tested and used suc~ess fu l ly~-~  to simulate a variety of laminar 
fluid flow and heat transfer pro’blems. Here it is used to simulate turbulent flows as well. 

The velocity-pressure coupling can be addressed via either an unequal-order3 or an equal- 
order’ velocity-pressure interpolation3 or via the vorticity-streamfunction formulation that 
inherently satisfies the divergence-free c o n ~ t r a i n t . ~ , ~  

As will be seen later, the vorticity-streamfunction formulation is only approximate for 
turbulent flows and does not go over well to 3D. Nevertheless, as an intermediate step towards 
full simulation of the 3D Navier-Stokes turbulent equations in their primitive formulation by a 
control volume finite element method and in order to gain a better insight of the exponential 
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interpolation function, in this paper we will address the velocity-pressure coupling via the 
vorticity-streamfunction formulation. The good results of the present calculations will show that 
the simplifications associated with the formulation for turbulent flows can be accepted as a 
modelling approximation. The major difficulty becomes associated with the computation of the 
vorticity on solid walls and this difficulty becomes even more restricting when computing 
turbulent flows with a k--E model because of the wall functions usually associated with the use of 
such a model. In this respect two possible types of boundary conditions, to be imposed on the 
vorticity on solid walls when a k--E model is used, have also been investigated. 

2. GOVERNING EQUATIONS 

The phenomenon under consideration is represented by a steady two-dimensional or axisym- 
metric laminar or turbulent flow. The governing equations for this system may be divided, for 
convenience, into two groups, i.e. the fluid motion equations and the turbulence equations. 

2.1. Fluid @ow equations 

via the vorticity-streamfunction formulation (0, I)). The vorticity is expressed by 
The axisymmetric equations representing the conservation of mass and momentum are written 

where u and u are the velocity components in the x- and y-direction respectively. 

satisfied. We then have 
The streamfunction t j  is expressed in such a way that the continuity equation is identically 

a* a* 
aY ax ’ rpv= -- rpu=- - ,  

with r the radius for axisymmetric configurations. 

streamfunction 
Using (1) and (2) ,  the governing equations for the fluid flow problem become7 for the 

-+ ,=-ppor+ ( -- :f ) maxi 
tq a2* 
a x 2  ay (3) 

and for the vorticity 

where p is the density. Also, maxi = 1 and y = r for axisymmetric flow or uaxi = 0 and r = 1 for planar 
two-dimensional flow. p e  is the effective viscosity given by 

P e  = P + Pt7 ( 5 )  

p being the laminar viscosity and p, the turbulent viscosity evaluated according to the k--E model 
of turbulence.* 

Mention has to be made here of the fact that (4) is not derived from first principles. The 
derivation of Gosman et aL7 is a gross approximation for the shear stress expression. In fact it is 
well knowng that the exact vorticity equation is so complicated as to be impractical for variable 
viscosity turbulent flows. However, no attempt will be made here to justify their derivation in a 
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systematic way. Equation (4) will be accepted as a modelling approximation which will prove 
to be very useful in view of the quality of the numerical predictions when compared to 
experiments. 

2.2. Turbulence equations 

Turbulence kinetic energy: 

a a CL ak CL ak - ( r p u k ) + - ( r p u k ) = -  r e -  +- r e -  +r(Gk-pe) .  ax a ,  :x ( , , a x )  :,( , a , )  
Energy dissipation: 

a a 
- (rpus)  +- (rpus) =- 2 - +- r 2 - +- (el G, - c,ps). ax a, :x ( :&::) :,( :&:;) 'k" (7) 

Gk and c1 Gk are generation terms, as opposed to the destruction terms - p& and - cZps.  G, is 
given by 

The turbulent viscosity is related to k and E via 

This turbulence model has five constants: bk, o,, el,  c2 and cd. The following values are 
commonly used:' 

Gk a& c 1  c2 cd 

0.9 1.22 1.44 1.92 009 

In general the k--E model is only valid in regions where the flow is entirely turbulent. Close to 
the solid walls viscous effects become dominant and such a model does not lead to acceptable 
predictions. For numerical computations there are two main methods for treating the adjacent 
wall regions more carefully: (i) wall functions or the law of the wall and (ii) low-Reynolds-number 
models. 

Law of the wall. The region close to solid walls can be divided into two sublayers (Figure 1): 
(a) a laminar sublayer or viscous sublayer where purely viscous effects are dominant and (b) a 
turbulent sublayer. We suppose that the first computational point P adjacent to the wall is in the 
turbulent sublayer (Figure 2) and that the velocity vector at this point is parallel to the wall. In 
this sublayer the velocity has a known logarithmic variation." In this case conditions on the wall 
are related to conditions at point P through this law. 

The computational procedure thus skips over the viscous sublayer where many grid points are 
necessary to adequately describe the steep gradients in this region. It is only necessary to make 
sure that point P is indeed in the turbulent sublayer. Other types of sublayers can be considered in 
building the law of the wall," with the point P within any of these sublayers. Naturally the 
velocity variation has to be changed accordingly. 

Here we consider only two sublayers (viscous and turbulent), with the first computational point 
P being in the turbulent sublayer. Details on how to apply this law of the wall to numerical 
computations are given in the section dealing with boundary conditions. 
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Figure 1. Region close to solid walls 

Figure 2. Location of points adjacent to wall 

Low-Reynolds-number models. These models use the same basic equations for k and E, together 
with damping functions on the viscosity and turbulence equations in order to take into account 
wall effects. This approach allows calculations to be done up to the solid walls, eliminating the 
need for a special computational procedure near the boundaries. Various models of this kind 
exist;12*13 however, they all have a major disadvantage when compared to the k--E model with the 
law of the wall, namely an excessive number of grid points are needed in the sublayers to 
adequately describe the gradients in these regions. Convergence rates become too slow for 
realistic computations to be done,14 particularly when an explicit time-marching solution 
procedure is applied. Nevertheless, in this work we also used a low-Reynolds-number model to 
take wall effects into account because in our case an implicit solution procedure was applied, 
making the convergence rates acceptable. The transport equations for k and E are14 (terms in 
boxes represent the damping functions that are added to the original k--E model as 
by (6)-(9)) 

a a P ak P ak -(rpuk)+-(rpuk)=- r 2 -  +- r e -  +r(G,-p&)- ax dY aax ( s , a x )  aaY ( 0,aY) 
described 

(10) 

-(rpu-E)+-(rpuE)=- a a a ( r e -  P a , )  +- fy(  r e -  P a, )  +- 'k" ( c,G,-c,p~ ax aY ax a ,ax  0, aY 
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the constants cd, cl, c2, ok and oa and the generation term G, stay the same as before. The 
turbulent viscosity is now 

and 

where 

where 

Pk2 R t- 
EP 

3. BOUNDARY CONDITIONS 

On each of the computational domain boundaries conditions are required to solve the differential 
equations. Generally there are four types of boundaries: inlet, outlet, solid walls and symmetry 
axis. For each type and for each unknown let us see what boundary conditions are to be specified. 

3.1. Boundary conditions for k-E 

Solid walls. If the law of the wall is applied, then we suppose that the first computational point 
close to the wall is in the turbulent sublayer. At this point the velocity Up is parallel to the 
boundary and has a logarithmic variation" 

u*, called the friction velocity, and yp' , representing a dimensionless distance from point P (or 'p') 
to the wall, are defined by 

0.5  

u *= ( : )  , 

+ - PYPU* 
Yp --> 

c1 

where t, is the shear stress at the wall, K is the Von Karman constant, E is a roughness parameter 
( ~ = 0 4 ,  E=9.7)Io and y, is the actual distance from point P to the wall. 

It is the value of the dimensionless distance yp' that sets the limits between the different 
sublayers. For the turbulent layer yp' is approximately between 10 and 400.'' 

We now suppose that the turbulent sublayer is in local equilibrium so that the rate of 
k-production is exactly equal to its destruction rate. This leads to 
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By further supposing that the shear stress is constant in the sublayer ( T , = T ~ )  and using the 
logarithmic law, it is found that 

Equations (20) and (21) give the values of k and E at point P without solving the transport 
equations (6) and (7). In order to obtain u*, equations (16) and (18) are combined to yield the 
non-linear equation: 

/u , ,=-In(  u* --). Epy,u* 
K 

The velocity Up is known from the solution of the vorticity and streamfunction transport 
equations (3) and (4). The values of k ,  and 4 are used to calculate the turbulent viscosity and serve 
as boundary conditions (Dirichlet) for the rest of the domain (Figure 3). It is not necessary to 
calculate k and E at the walls. The viscosity there is equal to the laminar viscosity. 

When the low-Reynolds-number model is used, the turbulence kinetic energy is set to zero on 
the solid walls because there are no velocity fluctuations (no-slip condition u = u = 0) on this type 
of boundary. The dissipation E is also set equal to zero, although the justification for this is less 
straightforward than for k (see Reference 15 for a full explanation). 

Inlet. Values of k and E are not known at  the inlet but, if they are not given by experimental 
data, some reasonable assumptions can be made. The kinetic energy of turbulence is estimated 
according to a certain percentage of the square of the average inlet velocity: 

where U is the average inlet velocity and 1 is a percentage. 
The dissipation is calculated according to the equation 

k 3 / 2  
& = C  -- 

aD ’ 

where D is the inlet diameter. The values A = 0.03 and a = 0005 are commonly used and may vary 
slightly in the literature depending on the author. 

boundary points for k and E 

computational domain for k and E 

Figure 3.  Calculation domain for law of the wall 
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Outlet. We suppose that the flow extends over a sufficiently long domain so that it is fully 
developed at the exit section. Thus for any variable 4 the condition is 

-=O. 
ax 
84 

Symmetry axis. Here the radial derivative of the variables is set equal to zero: 

-0. 84 
ar -_ 

3.2. Boundary Conditions for the Vorticity and Streamfunction 

Solid walls 

Laminar flow 

When working with the vorticity-streamfunction formulation, there is no explicit Dirichlet-type 
boundary condition such as a zero velocity at walls imposed to satisfy the no-slip condition. The 
value of o to be imposed is implicit because it depends on the flow itself. Moreover, it is the 
vorticity which is produced on solid walls which affects the flow field and which therefore has to 
be computed with care. In generalg its value on solid walls is deduced from a Taylor series 
expansion of the streamfunction II/ around the solid point. 

Let P be a point located at a distance Yp from a wall point W and consider a local co-ordinate 
system Xw and Yw where the direction given by Yw is perpendicular to the wall (Figure 4). 

Then a first-order boundary condition for the vorticity on solid walls which is also valid for 
variable density flows is given by7,' 

and a second-order boundary condition by 

which now becomes a condition of the Neumann type. Equation (28) can further be worked by 
expressing the derivative in terms of backward differences. Thus 

'I 

3 

Figure 4. Calculation of vorticity at solid walls 
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Because of the small Yp required by the turbulence resolution, the superiority of the second- 
order form was not evident in this work. Indeed, for the test cases to be presented here, no major 
differences were detected in the computed velocity field using (27) or (28). Because of its greater 
simplicity, we then adopted a first-order boundary condition. 

For the streamfunction we impose a constant value on the walls because they are also 
streamlines. In order to find this value, the velocity profile can be integrated at a section where it 
is known (inlet) and the value of $ can be fixed on another boundary (symmetry axis or solid). 
This allows the integration constant to be calculated. The condition for I) on solid walls is 
therefore of the explicit Dirichlet type. This is not the case if the domain is multiply connected. 
Under these circumstances, for solid boundaries which are also obstacles (closed contours), the 
value of $ has to be computed in another way.16’17 

Turbulent flow 

For turbulent flows the calculation of the streamfunction remains the same as before. The 
condition for the vorticity changes only when the law of the wall is used. In this case we must find 
a way to impose the shear stress z, at the wall according to the logarithmic distribution of the 
velocity close to the wall. 

In order to do this, we must first recall that the mesh point adjacent to the wall is in the 
turbulent sublayer (Figure 2) and see how the law of the wall can be enforced when the (u, u, p )  
formulation is used. If the expression 5, remains in the formulation and in the discretization, then 
its value can simply be computed from (17) knowing the friction velocity from (16). If not, a well 
known alternative is to compute a fictitious slip velocity on the wall. This is deduced from the 
logarithmic variation as follows. 

First, equation (16) is derived with respect to y,: 

au u* 

aY K Y ,  
-=-, 

Then, at point P and using backward difference, the derivative XJ/i?y is evaluated: 

U* 

Finally, the slip velocity U ,  is given by 

U,+u*/K if U,<O, 
Uw={ U,-U*/K  if Up>O, 

and it has the same sign as Up. 
Given this slip velocity, wenow have to modify the calculation of the vorticity on solid walls by 

reworking (27) or (28) without using U ,  = 0 on solid walls. For a first-order development we get 
an implicit Dirichlet-type boundary condition of the form (neglecting curvature effects) 

5 Y ~ r w p w = $ , - $ , + r , p ~ w Y p .  (33) 
U ,  is the local slip velocity relative to the frame illustrated in Figure 4 and computed from (32). 

Inlet. At the inlet the velocity is known, so that the streamfunction and vorticity distributions 
are calculated from their own definitions (1) and (2). 

Outlet. Conditions are the same as for k or E,  whether for $ or w (equation (25)). 
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Symmetry axis. The streamfunction is assigned a fixed value, while the vorticity o is equal to 
zero because of the conditions au/ay=O and v=O on the axis. 

We conclude this section on boundary conditions by reiterating that in this work wall effects, 
when employing the k--E model, are taken into account by a low-Reynolds-number model or by 
the law of the wall. This law is applied via the computation of a wall slip velocity and the 
corresponding vorticity. 

4. THE NUMERICAL SOLUTION 

In order to solve the set of partial differential equations previously described, the control-volume- 
based finite element technique presented by Baliga and Patankar2 has been followed. Each 
equation in the system can have the following generic form 

where 4 represents the scalar which undergoes convection and is diffused through the field, is 
the exchange coefficient and S ,  is a source or sink term. A description of the discretization method 
by reference to this general transport equation follows. More details may be found in References 
2, 18 and 4. 

4.1. Domain discretization and interpolation function 

The domain of interest is first divided into three-node triangular elements. Around the 
computational point P a control volume is created by joining the centroids of all neighbouring 
elements through the midpoints of the corresponding sides (Figure 5). 

Figure 5. Polygonal control volume 
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Following the finite volume framework, equation (34) is integrated over the control volume. 
This procedure requires an interpolation function for 4. Baliga and Patankar' developed 
an approach based on the idea of using the exact solution of the one-dimensional 
convection4iffusion equation as the interpolation function, namely the exponential scheme first 
proposed by Allen and So~thwel l . '~  As an extension, an interpolation function that is as close as 
possible to the exact solution of the two-dimensional convection-diffusion equation was intro- 
duced. With the origin located at the centroid of the element, a locally flow-oriented co-ordinate 
system is defined ((X, Y) ,  Figure 6). For each triangular element the interpolation function for 4 is 
given by 

4 = AZ + B Y +  c, (35) 

with 

where X and Y are and local co-ordinates and X,,, = max(X, , X, ,  X,). Uav is the average local 
velocity component and is given by 

where 

U 1 f  uz + u, u =---. u1 + u ,  + u ,  
3 .  av 

u =--- 
3 '  av 

r and p are average values of the exchange coefficient and the density respectively that prevail 
over the element. The values of A,  B and C are uniquely determined by the values of 4 pertaining 
to the three nodes 1,2 and 3. 

Y 

T 
I X  

Figure 6. Triangular clement with global (x. y )  system and local (X, Y )  flow-oriented co-ordinate system and related 
nomenclature 
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The good characteristics of this shape function have been further demonstrated by Prakash 
and Patankar3 and Hookey and Baliga4*” for fluid flow or heat transfer problems using the 
primitive variable formulation or the vorticity-streamfunction f~rmula t ion .~  It must be 
pointed out that because there are no convection terms in the partial differential equation 
for the streamfunction $, the interpolation function for this variable is bilinear and given by 
$ = ax + by + c. The resulting numerical scheme is then applied to solve laminar or turbulent 
incompressible flows. 

One must add that the main advantage of an unstructured mesh-based control volume method, 
whether the elements are triangles or polygons, is the flexibility by which geometric complexity 
can be handled. Also, for the present two-dimensional applications the triangular discretization 
will lead to a matrix with a complicated sparsity pattern compared to a regular banded matrix 
arising from structured grids. However, this does not necessarily imply an excessive price to pay. 
If, for example, conjugate gradients-like methods combined with ILU preconditioning are used, 
the impact of the irregular node numbering does not decrease substantially the efficiency of these 
methods.21 Therefore, although those solution procedures are not used here and the flow 
configurations simulated in this work do not contain fine geometrical details that require 
triangular unstructured meshes, because of its generality we used the unstructured mesh 
approach. 

4.2. Discretized equations 

The discretization of the equations is carried out by integrating (34) over the defined control 
volume. Using Simpson’s rule through points a - r - o or o - t - c (Figure 6 )  and applying the 
divergence theorem, an equation of the form 

4 p  + 1 % b 4 n b =  dp (38) 
is obtained for each computational point, where up, unb and d ,  are called the discretization 
coefficients: subscript ‘nb’ refers to neighbouring points and subscript ‘p’ stands for the 
computational point P. 

4.3. Boundury nodes and source terms 

Boundary nodes. For nodes at Dirichlet boundaries, up = 1, anb = 0 and dp becomes the known 
value of 4. For Neumann boundaries an equation of type (38) for each point of the boundary has 
to be written. We present here a convenient way of doing this for unstructured meshes. 

Consider the boundary point W together with the triangle containing the normal to the 
boundary at that point and suppose a linear variation of the property 4 in that triangle. Then, in 
the local (X, Y )  frame of Figure 7, 4 has the form 

4 = A X  + B Y +  c. (39) 
From (39) the normal derivative is easily evaluated. In fact 

3 a4 
a y  i = l  
- = B =  1 N i 4 i ,  

where Ni are the base functions associated with the linear interpolation function of 4 in the 
triangle containing the normal. In terms of the local (X, Y )  co-ordinates pertaining to nodes 1,2 
and 3 of Figure (7), the N i  are 
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Figure 7. Boundary node and related nomenclature 

where 

Jc = I XI ( Y ,  - Y3) - Y ,  (X, - X , )  + x, Y3 - x, Y ,  I .  
Thus, if the normal gradient is known from the boundary condition and Y is in the normal 

direction to the boundary, equation (40) is precisely of type (38) and therefore included in the 
global system. This is very useful when computations are done in a totally implicit way as is the 
case here. 

Source terms. Source terms are integrated over the control volume (CV) by considering an 
average value calculated at the centroid and which prevails over the element, i.e. 

where 6 is the volume (an area in 2D) of the element and the sum is taken over all the neighbours 
of the computational point. 

Whenever it is possible, source terms are linearized so that the coefficient ap may also include a 
part due to the linearization and discretization of the source term. However, for k and E source 
terms special care was taken to avoid overshoots in the solution (negative values of k or E). The 
procedure consisted of linearizing first the negative part of the source term and then including it 
in the discretization coefficient ap on the left-hand side of (38). For a reason that will become 
apparent later, even if the remaining positive part of the source term can also be linearized and 
moved over to the left-hand side, it is kept on the right-hand side. The linearization of the negative 
part is done in the following way. 

Let S; denote the negative part of the source term, 4 being k or E.  S; may be written as 

S ,  = - 4f(4), 
where f(4) is a function of 4. The linearization is then taken to be 

(43) 

where n stands for the value at the previous iteration. 
This practice of taking the negative part only of the source term and including it on the left- 

hand side of (38) makes the resulting matrix more diagonally dominant and the iterative 
procedure converges. During the first iteration steps the values of k and E still remain negative and 
after that they become admissible. 
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4.4. Solution of the discretized equations 

For each computational point one equation of type (38) is written. These equations are then 
assembled to solve the entire field implicitly. The resulting matrix is sparse and without any 
particular structure and there are a number of suitable methods to solve the discretized equations. 
We used a sparse matrix solver from IBM’s ESSL library.2z The overall solution procedure can 
be outlined as follows. 

1. Guess all the necessary variables. 
2. If the law of the wall is used, then compute the slip velocity and boundary conditions for k--E. 
3. Solve the streamfunction-vorticity transport equations. 
4. Solve the transport equations for k--E. 
5. Update the turbulent viscosity. 
6. Treat the updated values of all variables as improved guesses and return to step 2 and repeat 

the process until convergence. 

4.5. Coupled or segregated? 

The transport equations for w and $ can be computed via direct coupling, i.e. considering $ 
and o as unknowns in a linear algebraic system of equations, or solved sequentially, first for t+h 
and then for o. The latter requires less memory space. 

Our numerical experiments showed that when solving for $ and o following a segregated 
approach, heavy underrelaxation was needed for both variables and convergence was slowed 
down especially at high Reynolds numbers. This can be attributed to the linear wall vorticity 
terms. In the coupled approach those terms are treated implicitly so that no underrelaxation is 
necessary and the procedure is rather insensitive to parameters such as the Reynolds number, 
thereby yielding a much more stable and robust procedure and a quicker convergence history as 
well. Thus the coupled approach has been used for all the numerical results to be presented below. 

5. NUMERICAL RESULTS 

The procedure and the method described above were applied to solve the following test cases: 

(1) laminar axisymmetric flow in a channel with sudden contraction 
(2) turbulent axisymmetric flow in a channel 
(3) turbulent axisymmetric flow in a diffuser. 

All the test cases are accompanied by experimental or analytical data from the literature that 
will be used to assess the validity and accuracy of the method. Meshes were generated using 
TRIA-2D.23 

5.1. Laminar $ow in a pipe with sudden contraction of cross-sectional area 

This test has been chosen to investigate the validity of the scheme when applied to axisym- 
metric computations. It has been studied experimentallyz4 and its global features are given in 
Figure 8. At the inlet of the pipe a parabolic fully developed velocity profile is imposed with a 
Reynolds number (based on the average inlet velocity and diameter) of 196. Owing to the 
symmetry of the problem, the calculation domain is only half the physical one. The domain is 
discretized with 567 nodes and 1071 elements distributed as shown in Figure 9. 

Figure 10 shows a comparison between the current numerical predictions and the experimental 
dataz4 at the six locations shown in Figure 8. The agreement is very good at all stations. 
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Figure 8. Global features of sudden contraction flow and location of comparison stations (scaled drawing) 

tigure 9. Domain discretization for sudden contraction flow, 567 nodes and 1071 elements 

Convergence was reached after only 15 iterations using the coupled approach for a total CPU 
s per iteration per time of about 10 s on an IBM 3090 180 VF, giving approximately 1 x 

point. 

5.2. Turbulent flow in a circular pipe 

Turbulent flow in a circular pipe is a classical and yet essential test for validating the setting of 
the turbulence model. We consider here a fluid that enters a circular channel with uniform 
velocity profile and a Reynolds number (based on average inlet velocity and diameter) equal to 
1.1 x lo5 (Figure 11). At the exit the flow is entirely developed and we want to predict the velocity 
profile at this station. 

Figure 12 shows the comparison between our numerical and Nikuradse's quasi-analytical 
results." Wall effects were taken into account via the law of the wall by computing a slip velocity. 
Correspondence of the results is seen to be excellent. Figure 13 shows the classical flat turbulent 
velocity profile at the exit section. 
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Figure 11. Global features of turbulent channel flow 

The mesh consisted of 325 nodes and 576 elements. When the low-Reynolds-number model is 
used, results are of the same quality (not reported here); however, the total number of nodes (653) 
is higher and their distribution is more dense near solid boundaries. The computations, however, 
are more stable because of a different and more reliable boundary condition for the vorticity. 
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Figure 12. Developed velocity profile in circular channel turbulent flow: -, present predictions with law of the wall; 
0, Reference 10 

Figure 13. Flat velocity profile at circular channel exit 
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X V 
Figure 14. Global features of turbulent diffuser flow and location of comparison stations (scaled drawing in the 

x-direction) 

5.3. Turbulent flow in a difuser 

This test case has been studied experimentally and n~merical ly .~~ The general characteristics of 
this flow are given in Figure 14. The Reynolds number (based on the average inlet velocity and 
diameter) is equal to 2 x lo4. Inlet conditions for k and E are not known from the experimental 
data; in order to minimize their influence, we added a channel upstream so that the flow enters the 
diffuser with established profiles. Our numerical experiments showed that the results were 
sensitive to the entry level of turbulence when no channel was added upstream. 
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The results will be compared at three downstream stations (Figure 14), two of which are in the 
recirculation zone and the last one just after it. Also, in order to compare their performance, wall 
effects are included via the law of the wall or via the low-Reynolds-number model. 

Results with the law of the wall. Figure 15 shows a comparison of the velocity profiles of our 
numerical predictions and the experimental data.” At the stations the predictions are only barely 
acceptable and are particularly bad close to the solid walls. Some recirculation region is still 
predicted but its intensity is too high and its length too short. Of course, predictions at the third 
station are strongly influenced by the predictions upstream and are therefore poor. 

The mesh used here consisted of 615 nodes and 1120 elements and convergence was reached 
after 30 iterations. As described earlier, the special treatment of the source terms eliminated the 
problem of overshoots in the solution immediately after the first iterations. 
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Figure 15. Velocity profiles at several stations, law of the wall -, present predictions; I?, experimental dataz5 
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Results with the low-Reynolds-number model. In this case better predictions are obtained as 
illustrated in Figure 16. The size and intensity of the recirculation zone are now correct and at the 
last station the results are also better but to a lesser extent. In fact, the low-Reynolds-number 
model performs better in the recirculation region because the velocity close to the wall does not 
have a logarithmic variation anyway. The recirculation zone shown in Figure 17 is in good 
agreement with the numerical and experimental data of Reference 25. Because of the character- 
istics of the low-Reynolds-number model, more points were added, mainly in the recirculation 
zone and close to the solid walls, resulting in a mesh containing 756 points instead of the 615 
points there were previously. Predictions in this region then improved dramatically. For a global 
enhancement many more points arc needed, both in the whole field and concentrated close to the 
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r / R j  
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Figure 16. Velocity profiles at several stations, low-Reynolds-number model -, present predictions; 0, experimental 
data” 
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Figure 17. Streamlines in recirculation zone of turbulent diffuser flow 

walls, as demonstrated by the channel flow test case and by the predictions at the third station, 
which are still poor. 

6. CONCLUSIONS 

A numerical procedure has been developed to solve laminar and turbulent flows. The study 
addressed the fluid flow problem via the vorticity-streamfunction formulation and used the 
standard k--E equations for modelling the turbulence. Wall effects in turbulent flows were taken 
into account by a low-Reynolds-number model or by the use of the law of the wall and a suitable 
boundary condition for the vorticity. The method made use of the control-volume-based finite 
element method introduced by Baliga and Patankar.2 The resulting discretized equations for the 
vorticity and streamfunction were solved in a coupled way to produce a fast and stable flow 
solver. Also, the special treatment of the source terms made it possible to avoid overshoots in the 
overall computations. Simulation of turbulent incompressible flows was found to be more 
accurate in the recirculating regions if a low-Reynolds-number model was used without requiring 
many more mesh points. However, for developed flows the law of the wall is more economical in 
terms of computing time and memory space (because fewer mesh points are needed for good 
predictions). The difficulties unique to the vorticity-streamfunction formulation and the low- 
Reynolds-number model are ones of stability because of the boundary condition on the vorticity 
that includes a fictitious slip velocity. 
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